Image compression using recurrent bivariate fractal interpolation
surfaces

P. Bouboulis* L. Dalla * V. Drakopoulos'
March 1, 2005

Abstract
A new method for constructing recurrent bivariate fractal interpolation surfaces through points sam-
pled on rectangular lattices is proposed. This offers the advantage of a more flexible fractal modelling
compared to previous fractal techniques that used affine transformations. The compression ratio for the
above mentioned fractal scheme is higher than other fractal methods or JPEG, though not as high as
JPEG2000. Theory, implementation and analytical study are also presented.

keywords: Fractal interpolation, IFS, fractal image coding, fractals, bivariate fractal interpolation sur-
faces, fractal image compression

1 Introduction

The theory of image coding using an iterated function system, or IFS for short, was first proposed by
Barnsley [1993]. Barnsley modeled real-life images by means of fractal objects, i.e., by the attractors, or by
the invariant measure supported by the attractors, evolved through iterations of a set of contractive affine
transformations. With the help of IFS’s along with a collage theorem, he laid the foundation of the fractal-
based image compression. A set of contractive affine transformations can approximate a real image and
s0, instead of storing the whole image, it is enough to store the relevant parameters of the transformations
reducing memory requirements and achieving high compression ratios.

The effectiveness of fractal image compression has been demonstrated by Jacquin [1992], Barnsley &
Hurd [1993] and Fisher et al. [1995]. They have shown that a well-designed fractal compressor yields
comparable compression ratios and image quality to the JPEG algorithm. However, fractal compression is
a heavily unbalanced technique; the computational requirements of the compression algorithm are orders of
magnitude greater than those of the decompressor. An overview of the variety of schemes that have been
investigated can be found in [Wohlberg, 1999]. The book by Lu [1997] combines introductory material with
an in-depth discussion of many aspects of fractal coding.

Our intention is to extend the 2-dimensional fractal interpolation models in order to construct (continu-
ous) fractal interpolation surfaces (or FIS’s for short) of a non-affine character and to explore their potential
use in the context of image interpolation. In this respect, we consider points of an image to be samples (on
a uniform rectangular grid) of a continuous surface. The use of bivariate FIS’s following the recurrent IFS
formalism permits the representation of static images with a fractal model that is more general, flexible and
computationally efficient compared with other fractal techniques which use FIS’s like in [Price, 1998] and
[Drakopoulos, 2004].

*Department of Informatics and Telecommunications, Telecommunications and Signal Processing, University of Athens,
Panepistimioupolis 157 84, Athens, Hellas (macaddic@otenet.gr).

TDepartment of Informatics and Telecommunications, Theoretical Informatics, University of Athens, Panepistimioupolis 157
84, Athens, Hellas (vasilios@di.uoa.gr).

fDepartment of Mathematics, Mathematical Analysis, University of Athens, Panepistimioupolis 157 84, Athens, Hellas
(1dalla@math.uoa.gr).

Image compression using recurrent bfis 2

2 The 2D Recurrent Bivariate Model

An hyperbolic IFS is defined as a pair consisting of a complete metric space (X,p) and a finite set of
contractive transformations w;: X — X, i = 1,2,..., M. It is often convenient to write an IFS formally
as {X;wi,wa,...,wp} or, somewhat more briefly, as {X;wi_pr}. The attractor of a hyperbolic IFS is the
unique set A, for which A, = limy_,., W¥(Ay) for every starting set Ay, where

M
W(A) = Jwi(A) for A e H(X),

and H(X) is the metric space of all nonempty compact subsets of X with respect to the Hausdorff metric.

The Collage Theorem (see [Fisher, 1995]) provides a measure of the goodness of fit of an attractor
associated with an IFS and a given nonempty compact set. An attractor that is close to a given set is one
with an associated IFS such that the union of all the maps applied to the given set is close to the given
set. The closer the union is to the given set, the closer the attractor of the IFS will be to the given set.
Therefore, in order to test the closeness of an attractor to a given set, one need not compute the attractor
itself. The collage theorem, however, is not constructive, it does not indicate how to find a set of proper
maps, but rather, it provides a way to test an IFS without need for computation of the attractor. In this
work we use IFS on R? to model images for data compression. Given an image z = f(z,y) that gives the
grey level at each point (z,y), we can use the attractor of such an IFS to approximate it.

Let X =[0,1] x [0,p] x R. Let S = {(xs,y;,2i;) : ¢ =0,1,...,N; 5 =0,1,..., M} be an interpolating
set with (N + 1)(M + 1) interpolation points such that 0 = 29 < 21 < --- < 2y = land 0 = yo <
y1 < --- < ym = p. Using the interpolation points, we partition [0, 1] x [0,p] into NM rectangles I;; =
[i—1, @) X [yj—1,y;5], 1 =1,2,...,N and j = 1,2,..., M which we call sections or regions. Furthermore, let
Q={(Zk,01,2:) : k=0,1,...,K; 1=0,1,...,L} be aset with (K +1)(L + 1) points with Q C S (Q # S),
suchthat 0 =Zp <1 < - <Zxg=1land 0 =gy < 91 < ... < gy = p. Using the points of () we partition
[0,1] x [0,p] into KL rectangles Jx; = [Tx—1,Zk] X [G1—1,%1),k = 1,2,..., K and | = 1,2,..., L which we
simply call intervals or domains. It is evident that for every domain there are some regions lying inside.

Let J be a labelling map such that J: {1,2,...,N} x {1,2,..., M} — {1,2,..., K} x {1,2,..., L} with
J(i,7) = (k,l). Define mappings w;;: X — R?,

x ;T + kij
wi |y | = dijy + lij ; (1)
z €T + 9ijy + hijay + sijz +mg;
such that
Tp—1 Ti—1 Ty, L
Wi -1 = Yj—1 swig | G- | = yi-1 |
Z—1,1—1 Zi—1,j—1 Zk1—1 Zij—1
A R (2)
Tk—1 Ti—1 z L
Wi (0 = Yj and wi; [9 | = | v
Zk—1,1 Zi—1,j 2k Zij
fori=1,2,...,Nand j =1,2,..., M. We refer to s;; as the contactivity or vertical scaling factors. The w;;

map the vertices of the domain Ji; = Jy; ;) to the vertices of the region I;; (see Fig. 1). Define the function

ui; by
xz o Qi 0 x kij> o (¢ij (l‘))
Uig = + = ,
j(y> (dij><y> (lij Yij (y)
so that W5 = (’U,ij,Fij). Then
uij(JJ(M)) = Iij, 1= 1,2, .. .,N andj = 1,2, . ,M

o

Image compression using recurrent bfis 3

Bivariate maps of this form have the property that vertical lines are mapped to vertical lines contracted by
the factor s;;. From the above constraints a system of 8 linear equations arises; thus, can always be solved
for the parameters a;j, kij, dij, lij, €ij, Gij, Nij, Msj in terms of the coordinates of the interpolation points
and the vertical scaling factors (see [Dalla, 2002], [Xie, 1997]). Finally, let ®:{1,2,...,N} x{1,2,...,M} —
{1,2,...,NM} be a 1-1 function (i.e. an enumeration of the set {(i,7):i=1,2,...,N;j=1,2,...,M}).
A recurrent IFS (or RIFS for short) associated with the set of data .S consists of the IFS {X; wi_n1-m}
and a row-stochastic matrix P = (ppm € [0,1]: n,m € {®(4,4), i=1,2,...N;5=1,2,..., M}), such that

NM
S pmm=1, m=12.. NM. 3)
n=1

The recurrent structure is given by the connection matriz C = (Cy,,) which is defined by

C.. = L, if pmpn >0
nn 0, if DPmn = 0,
where n,m = 1,2,..., NM. The transition probability for a certain discrete time Markov process is ppm,

which gives the probability of transfer into state m given that the process is in state n. Condition (3) says
that whichever state the system is in (say n), a set of probabilities is available that sum to 1, and they
describe the possible states to which the system transits at the next step.

We assume that pN, pK € N, the regions (defined by the interpolation points) are squares of side
d = 1/N, while the domains are squares of side A = 1/K (thus M = pN and L = pK) and the number
a= A/ = N/K is an integer greater than one. The number a? expresses the number of regions contained
in any domain.

If we define the enumeration ®(i,§) = (i — 1)M + 4, i = 1,...,Nand j = 1,...,M, then ®~!(n) =
(n=1)divM+1, (n—1)mod M +1), n=1,...,NM and the NM x NM stochastic matrix P is defined
by

S { 1/a?, if I(n71.) div M+1,(n—1) mod M+1 S JI((m—1) div M+1,(m—1) mod M+1)
0, otherwise

The basic concept behind fractal image compression using FIS’s is simple. Suppose we are given a digitised
image f that we wish to encode. Peak some image pixels and construct the interpolating set. Usually these
pixels have a constant distance ¢ along the horizontal and vertical direction. Using the interpolation points
we form a rectangular grid on R? and call the emerging rectangles (of side length) regions. Select then,
some of the interpolation points and construct the set). Usually these pixels have a constant distance A
along the horizontal and vertical direction, where A is a multiple of §. Using the points of () form another
rectangular grid and call the emerging rectangles (of side length A) domains. The goal is to find for each
region I;; a map w;; that maps the pixels of a domain Jy; (where (k,1) = J(4, j)) to the pixels of the specific
region I;; as close to the original pixels as possible. Storing the interpolation points and the parameters
which describe each w;; we can generate the attractor of the formed RIFS via the Deterministic Iteration
Algorithm (see [Barnsley, 1993al).

If the vertical scaling factors obey 0 < |s;;| < 1, then there is a metric d on X, equivalent to the Euclidean
metric, such that the RIFS {X;wi_n 1-a, P} is hyperbolic with respect to d and has A, as its attractor.
The following proposition gives the conditions needed in order to construct interpolating fractal functions
(see also [Bouboulis et al., 2004]).

Proposition 1 Let the RIFS be defined above and consider the domain Jy, k=1,2,... K, l=1,2,... L.
Suppose that

LEFTylv], v=1,...,a—1, denote the vertical distance of each interpolation point
{(T=1)a> Yi-1)atvs Z(h=1)a, (=1)atv)s YV =1,...,a— 1} from the line defined by the points

Image compression using recurrent bfis 4

(Tr-1,) (Tx, 1)

Domain

(Tr—1,1-1) \ (Tg,|1-1)

w. .
”\(\l\i—h Y;) (zi,)y))

S

Region
I

(Tic1,95-1) (@i, yj-1)

Figure 1: Mapping domains of an image to regions of an image.

(T(k=1)a> Y(1-1)as Z(k=1)a, (1-1)a) 9 (T(k—1)a> Yias Z(k—1)a, la)
RIGHTy[v], v=1,...,a —1, denote the vertical distance of each interpolation point
{(Tkas Y1=1)atv> Zka, =1)atv)s V =1,...,a — 1} from the line defined by the points
(xkav Yi-1)ar %ka, (lfl)a) and (l‘kaa Yias Zka, la)v
DOWNy,[v], v=1,...,a — 1, denote the vertical distance of each interpolation point
{(Th=1)atvs Y1-1)a> Z(k—1)atv, (1-1)a), YV =1,...,a — 1} from the line defined by the points
(T(k—1)as Y(1-1)as Z(k—1)a, (1-1)a) 04 (Tka, Y(1-1)a> Zka, (1-1)a)s
UPy[v], v=1,...,a—1, denote the vertical distance of each interpolation point
{(@=1)atvs Yia> Z(k=1)atv, 1a), YV =1,...,a—1} from the line defined by the points
(T(k—1)a> Yias Z(k—1)a, 1a) 94 (Tkas Yias Zka, ta)-

Each one of these vertical distances is taken positive, if the corresponding interpolation point is above the
corresponding line; otherwise is taken negative (see Fig. 2). Let the vertical scaling factors obey

Si,j . RIGHTJ(L]‘) [l/] = 57;_,_17]' . LEFTJ(Z'JFL]-)[V]
sij - UPyaplv] = sijr1- DOWNy(j1)[V]
fori, jyveN: i=1,...,N—1, j=1L....M—-1, v=1,...,a—1.

Then Ao will be the graph of a continuous function f:[0,1] x [0,p] — R that interpolates the data S =
{(xi,yj,zij) 1= 1,2,...,N;j = 1,2,...,M}.

Definition 1 The function f whose graph is the attractor of the RIFS described in Prop. 1 is called the
fractal interpolation surface corresponding to the data {(x;,vy;,2;):1=1,2,...,N;j=1,2,...,M}

Image compression using recurrent bfis 5

RIGHT[2]

4
DOWN[1]

3 The Proposed Algorithms

Let I;; = [zi—1, ;] X [yj—1,y;] be one of the regions. Let, also, Jy = [Zx—1,%k] X [§j—1,7;] be one of the
corresponding domains. It is obvious, that if the contractivity factors were known for the region I;;, the
other parameters could be easily determined.

3.1 Geometric calculation of the contractivity factors

From what was mentioned previously, we see that the vertices (Zx—1,%1-1), (Zk—1,91), (&, G1—1), (&, 91)
of the domain are mapped to the vertices of the region (x;—1,y;-1), (zi—1,¥;), (®i,yj—1), (x;,y;) and the
part of the function (image) that is “contained” in the domain Jy; is contracted vertically by the unknown
contractivity factor s;;. Choose y = g;—1. Let |uf| be the mean absolute vertical distance between any
function (image) value f(z,y) (with © = Zx_1,&x—1 + 1,...,2x_1 + 0 = &) and the straight line between
the vertices (Zx—1,9;—1) and (&, 1—1). The value of the vertical distance is taken as positive, if f(z,y) is
above the straight line and negative otherwise. Now choose y = §;—1 + 1 and compute |u}| similarly. In

general, choose y = §;_1 +r (for r = 0,1,...,0) and let |u¥| be the mean absolute vertical distance between
any value f(z,y) (with ¢ = &_1,%k—1 + 1,...,%k—1 + 0 = Zx) and the straight line between the vertices
(Zk—1,y) and (Zx,y). Similarly choose x = &1 + 1 (for r =0,1,...,0) and let |u¥| be the mean absolute

vertical distance between any function (image) value f(z,y) (with y = §;—1,91—1+1,..., 911+ = §;) and
the straight line between the endpoints (z,¢;—1) and (z,¢;). The sign of u? is taken as described above.
Then p = mean{pZ, p¥,r = 0,1,...,0}. We compute v similarly by using the values of the function lying
inside region I;;. Thus the contractivity factor is computed by s;; = v/pu.

3.2 The inverse algorithm

We now present an iterative algorithm for finding the model parameters, i.e. the interpolation points
(xi, i, 2i,j), the contractivity factors and the addresses (i.e., the best-matched domains) associated with
each region of the function. Suppose we are dealing with a N7 x Ny pixel image in which each pixel can be
one of 256 levels of grey. We choose § and A a priori and form the set of interpolation points S and the
set of address points). The number of interpolation regions, N M, is greater than the number of distinct
address domains, say M7. According to the existing theory, we need to store the model parameters. For each
emerging region we seek for the “best-mapped” domain with respect to a metric k. If a “good” match is found
we store the respective contractivity factor and its address (i.e. the number of the “best-mapped” domain),
otherwise we partition the region into a? smaller regions of side-length §/a, store the new interpolation points
(the vertices of the smaller regions) and repeat the procedure for each new region. The following algorithm
describes the procedure in details.

Image compression using recurrent bfis

Figure 3: Geometric calculation of the contractivity factors.

1) Choose values for § and A, such that A = ad. Choose, also, error tolerance ¢ and a maximum depth

dmax-

2) Create two queues, one named squeue and put all the regions inside as well as a queue named iqueue
and put all the initial interpolation points inside. In addition create two empty queues named cqueue
and aqueue (we store the contractivity factors in the first and the addresses in the latter). Set the
depth d = 1 and create an empty queue named squeue2.

3) While squeue is not empty do

(a) Get one region from squeue.
(b) For domain j =1: M; do
(i) Compute the contractivity factor for the map associated with the j-th domain and the region.
(ii) If |s| > 1, then go to (v). Otherwise check the condition of continuity. If it doesn’t hold,
goto (v).
(iii) Compute the other parameters and map the points of the j-th domain (say D;) through w
according to the mapping algorithm. Say w (D;) the emerging set.
(iv) Compute (with a proper distance measure) the distance h;; between w (D;) and the points
of region 1.
(v) Next j
(c) Find the j for which h;; is a minimum.
(d) If hij > € and d < dmax
then create four new regions, add them to squeue2, add the vertices of each new region to iqueue
(as additional interpolation points) and add 0 to aqueue
Else
store j with the minimum distance inside aqueue and s inside cqueue.

4) If squeue? is not empty, then set squeue = squeue2, d = d + 1 and go to (3).
5) Store dmax, 9, A, cqueue, iqueue and aqueue.

6) End.

Image compression using recurrent bfis 7

The mapping algorithm We map the domain D; to the region R.
1. Put the endpoints of the region R to the new set w (D).

2. Compute the other parameters. Let a = 0/A, where §, A are the side of the region and the corre-
sponding domain, respectively.

3. Map the points of the first and last row as follows. The first and the last point of these rows of D; are
interpolation points and they have been already mapped. Map the (a + 1)-th point of the domain to
the 2nd point of the w (D;). Continue by mapping the (2a + 1), (3a + 1), ... point of the domain to
the 3rd, 4th, ... point of the w (D;).

4. For all other rows: Map the (a + 1), (2a + 1),... point of the domain to the 1st, 2nd, ... point of the
w (D).

3.3 A decompression algorithm

To reconstruct the original image, we may use the Deterministic Iteration Algorithm (DIA) as in [Barnsley,
1993]. The DIA, though, has a minor drawback. When mapping the points of a domain to the corresponding
region, it is possible that some points of the region will not be mapped to a specific point of the region. For
example, the pixel (100,150) may be mapped to the point (34.33,12.46), which is not a specific pixel. It is
possible that most of the pixels will be mapped in this way. So, in order to reconstruct the original pixels, we
must use those points occurring from the mapping of each region that are close to the corresponding pixel.
In the previous example, the point (34.33,12.46) (among others) must be used for the reconstruction of the
pixels (34,12), (35,12), (34, 13) and (35, 13). Of course, this will increase the amount of calculations and it is
likely that if the number of iterations is not adequate, points near a specific pixel won’t be produced, leading
to more and more iterations.

In order to confront these problems we introduce a variation of the DIA for the case at which 6 = a" and
A = @™, In this case, the algorithm needs exactly r+ 1 iterations to reconstruct the original image without
computing unnecessary points. This means that the algorithm computes the points with integer coordinates
(that are actual pixels), thus not facing the same problems. Figs. 4 and 5 show how one image is divided
into regions and domains. We assume that the image has dimensions 9 X 9, § = 4 and § = 8 resulting in one
domain and four regions. The number in each pixel states the iteration in which every pixel is computed.
We have chosen § = 8 = 2% and A = 16 = 24, thus 2 + 1 = 3 iterations for the complete reconstruction are
needed.

The decompression algorithm

1. Create the queues AD[i], CONJi],IP[i], i = 1,2,...,dmax, which contain the adresses, contractivity
factors and interpolation points of the regions of side 6 /a(*~1). All these numbers were stored in aqueue,
cqueue and iqueue, respectively.

2. Put the interpolation points inside the picture.

3. Compute steps = trunc (iZE%)
4. for t =1 : steps do

for i =1 : min{steps, dmax}

(a) For every region of side 6/a~) do

(i) Find the corresponding domain (j) (from ADIJi]).
(ii) If j # 0 then

Image compression using recurrent bfis 8

|] |
O | | | 5]
| = =
O | | | 5]
|]]

Figure 4: The grid of the pixels and not their colors is shown by choosing 6 = 8 and A = 16, thus emerging
16 regions and 4 domains. The endpoints of the domains are painted black. Every colored pixel is an
interpolation point.

A. Find the corresponding contractivity factor (from CONJi]) and compute the rest of the
map parameters.

B. Do the following until the last row of the domain is reached (a*~) times). Remember
that the domain (as a part of the picture) is initially empty and gradually fills iteration
after iteration. At this stage only pixels of distance (horizontal or vertical) 6/a(*~") are
already mapped and, therefore, capable of been mapped again. So, to go from one line
to the “next” you must skip 6/a*=1) lines.

e For the first row do: Skip the first point (it has been mapped already). Map the “next”
a — 1 points of the domain, skip the “next” point map the “next” a — 1 points etc. Do
this until the right domain endpoint is reached (a(*~1) times). Remember that these
a — 1 points are not consecutive! To go from one point to the “next” you must skip
§/a*=Y points.

e Map the next a — 1 lines as follows: At each line map a’ + 1 points. Remember that
these points are mot consecutive! To go from one point to the “next” you must skip
§/a*=Y points.

(iii) For the last line do: Skip the first point (interpolation point). Map the “next” a — 1 points
of the domain, skip the “next” point map the “next” a — 1 points etc. Do this until the
right domain endpoint is reached (a*~") times). Remember that these a — 1 points are not
consecutive! To go from one point to the “next” you must skip 6/a*~") points.

4 Comparative Results and Conclusions

As mentioned above, after the application of the algorithm on an image we need to store some interpolation
points (integers), some addresses (also integers) and some contractivity factors (floating points). In order to
store the latter we must first quantise them. We use the uniform quantiser. In addition, we may apply some
sort, of lossless compression to the interpolation points and the addresses to increase the compression ratio
even further. In the next examples we used the entropy coding compression and 6 bits for the quantisation
of the contractivity factors (smaller values decrease signficantly the quality of the reconstructed image).

Image compression using recurrent bfis 9

0 0 0 0 1 0 1 ojjoj2j1j2j0j2|112]60
2121221222]|2]2

1 1 1 1 1 1121121112121

21212212]|2]2]|2]|2

0 0 0 0 1 0 1 ojjoj2j1j2j0j2|112]60
21212212]|2]2]|2]|2

1 1 1 1 1 1121121112121

2121221222]|2]|2

0 0 0 0 1 0 1 0(j0j2(1]2]0]2]1]2]60

(a) (b) ()

Figure 5: The decompression (reconstruction) of an image region is shown. (a) Initially we put the interpo-
lation points. (b) At the first iteration we map the interpolation points of the domain to each region. Thus,
each region has 5 new points. (c) At the second iteration we map the existing points (i.e, the interpolation
points and the points that emerged from iteration 1) of the domain to each region.

In order to compute the distances described in the algorithms, we used the ps (Euclidean) distance
measure. The original image used as our reference point in the experiments presented here is the 2049 x
2049 x 8 bpp image of Lena shown in Fig. 4(a). Finally, for the calculation of the contractivity factors we
used the geometric approach described in Subsection 3.1.

As we described previously, the method we introduced here partitions one image into regions and domains,
S0 it is necessary that the dimensions of the image must be multiples of A. Thus, one must realise that we
can only model images that fulfill the previous criteria. For the rest, we must make some minor modifications
to the algorithms (i.e., add some “dummy pixels”). We applied the two methods to the image of Lena. Fig.
4 shows PSNR versus compression results for 2049x2049 Lena using (a) some fractal-based and (b) some
fractal-based and some non-fractal-based methods. “PSA2D” is the 2D piecewise self-affine model, “Bivariate”
is the 2D piecewise bivariate model we introduce, while “Barnsley” stands for the method devoloped by
Tterated Systems and described in length by Ning Lu in [Lu, 1997]. To measure the time each method
needed to compress this image we used a Pentium 4 PC with a 2.66 GHz CPU clock running Windows XP.
The method was implemented by using C++ and we created an executable that can compress any image.
The results are shown in Table 1 and Figs. 6-8.

The 2-dimensional fractal interpolation method described here achieve compression ratios comparable
to that of Barnsley’s and to JPEG. Its major drawback is that it is less efective at the edges of the image
as one can observe by closely looking at the above images. Choosing a smaller value for ¢ eliminates this
drawback, the PSNR value approaches the PSNR value of the JPEG format, but the compression ratio is
decreased significantly. In general the bivariate model acts better than JPEG, but not as good as JPEG2000
or SPIHT (another wavelet-based approach in image compression). It is interesting, though, to see that the
model we propose outperforms the “best” previous fractal method developed by Iterated Systems Inc. This
happens because the latter uses affine maps instead of bivariate ones.

Image compression using recurrent bfis 10

Figure 6: (a) The original image of Lena. (b) The test image after compression with the bivariate model for
5 =64, A=128, ¢ =4, dypay = 4.

Figure 7: The test image compressed (a) by a factor of 56.60 with 40.37dB PSNR and § = 32, A = 64,
e =24, dpmar = 3 (b) by a factor of 141 with 45.74dB PSNR and ¢ = 64, A = 128, ¢ = 2.6, dyax = 3 using
the bivariate model.

Image compression using recurrent bfis

Lera 20492049
%
50
4
N
e el
o B "
kY]
V]
2
000 5000 10000 150,00
conpression ratio

Lena 2049x2049
55
——Berigte| | o
— z
Barsley| z
JPEG o
- PSAD
20 : . ! :
0,00 500,00 1000,00 1500,00 2000,00

compression ratio

—— Bivariate
—— JPEG2000

(a)

(b)

Figure 8: Comparison of results for 2049 x 2049 image of Lena.

Parameters (6, A, dmax,£) | Enc. time (sec) | PSNR (dB) | comp. ratio |

32,64, 3,0.7 ~ 2 min 43.22 25:1

64,128,4,0.6 ~ 2 min 42.52 30.23:1
64,128,4,1.6 ~ 1 min 41.03 48.85:1
32,64,3,2.4 ~ 1 min 40.37 56.6:1

64,128,4,2.2 ~ 25 secs 40.01 62:1

64,128,4,2.6 =~ 25 secs 39.44 69.72:1
32,64, 3,3.2 =~ 20 secs 38.38 81.91:1
64,128,4,4 =~ 20 secs 37.46 95.08:1
64,128,3,2.6 =~ 18 secs 35.74 141.1:1
64,128, 3,4 =~ 15 secs 35.01 171.76:1
64,128,2,1.7 ~ 18 secs 33.39 210.31:1
64,128,2,3.4 =~ 18 secs 33.18 238.61:1
32,64,1,4 ~ 25 secs 28.53 426:1

64,128,1,4 =~ 25 secs 24.37 1776:1

Table 1: Comparison of the application of the Bivariate model on the image of Lena (2049x2049) using

various parameters.

11

Image compression using recurrent bfis 12

References

[1] Barnsley, M. F. [1993] Fractals everywhere 2nd ed. (Academic Press Professional, San Diego CA).
[2] Barnsley, M. F. & Hurd, L. P. [1993] Fractal image compression (AK Peters, Wellesley MA).

[3] Bouboulis, P. & Dalla, Leoni & Drakopoulos, V. [2004] “On the box counting dimension of the recurrent
bivariate fractal interpolation surfaces,” (submitted).

[4] Dalla, Leoni [2002] “Bivariate Fractal interpolation functions on grids,” Fractals 10(1), 53-58.

[5] Drakopoulos, V. & Bouboulis, P. & Theodoridis S. [2004] “Image compression using affine fractal surfaces
on rectangular lattices,” IEE Proc. Vision, Image & Signal Processing, submitted.

[6] Fisher, Y. [1995] Fractal image compression: Theory and application (Springer-Verlag, New York).

[7] Jacquin, A. E. [1992] “Image coding based on a fractal theory of iterated contractive image transforma-
tions,” IEEE Trans. Image Processing 1(1), 18-30.

[8] Lu, N. [1997] Fractal imaging (Academic Press, San Diego CA).

[9] Price, J. R. & Hayes III, M. H. [1998] “Fractal interpolation of images and volumes,” Proc. of the 32nd
Asilomar Conference on Signals, Systems, and Computers 2, 1698-1702.

[10] Wohlberg, B. & de Jager, G. [1999] “A review of the fractal image coding literature,” IEEE Trans.
Image Processing 8(12), 1716-1729.

[11] Xie, H. & Sun, H. [1997] “The study of bivariate fractal interpolation functions and creation of fractal
interpolation surfaces,” Fractals 5(4), 625-634.

